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Abstract

We investigated reproductive regulation in male Rufous-winged

Sparrows, Aimophila carpalis, a Sonoran Desert passerine that
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breeds after irregular summer rains. Field and captive data

demonstrate that increased photoperiod stimulates testicular

development in March and maintains it until early September.

Free-living birds caught in July and placed on captive long days

(16L: 8D) maintained developed testes for up to 7 months, and

free-living birds caught in September, during testicular regression,

redeveloped testes when placed on captive long days, indicating

that these birds were still photosensitive. Captive birds on long

days maintained testicular development when exposed to

temperatures mimicking those occurring during regression in free-

living birds. In free-living birds, testicular development was

observed during spring and summer, but unless this was

associated with rainfall, breeding (indicated by juveniles) did not

occur. Large increases in plasma luteinizing hormone (LH) in free-

living males were correlated with heavy rainfall in July/August,

when the birds bred, and in November, when they did not breed.

In captive birds, plasma LH concentrations were unresponsive to

photoperiodic changes, but may have responded to social cues.

Plasma prolactin concentrations were directly correlated with

photoperiod in free-living birds, but an effect of photoperiod on

prolactin secretion was not seen in captive birds. It is concluded

that male Rufous-winged Sparrows use long photoperiods to

stimulate and maintain testicular development, but exposure to

long photoperiods does not terminate breeding by inducing

absolute photorefractoriness. The specific timing of reproductive

behaviors is apparently determined by elevated plasma LH

coinciding with long day stimulated gonad development.
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Introduction

In many species of birds, environmental information initiates

reproductive development prior to the onset of optimal conditions

for raising offspring while other environmental information

regulates the specific timing of reproductive behaviors and the

eventual termination of reproduction (Wingfield et al., 2000). In

many seasonally breeding, temperate zone birds, the annual

increase in day length (photoperiod) is the primary proximate

factor used to initiate reproductive development (Dawson et al.,

2001, Follett and Maung, 1978, Hamner, 1968, Mishra and Tewary,

1999, Silverin et al., 1999, Wingfield et al., 1993). Long days

maintain reproductive function throughout the breeding period

and if photoperiod is reduced below the threshold duration, the

reproductive system regresses (Hamner, 1968, Wingfield et al.,

1993). For most photoperiodic birds studied, prolonged exposure

to long days (approximately eight weeks) causes a total loss of

sensitivity to photoperiod as a reproductive stimulus and breeding

is terminated (Dawson, 1991, Silverin et al., 1999, Wingfield et al.,

1993). This phenomenon is called absolute photorefractoriness

(Hamner, 1968). Japanese Quail, Coturnix coturnix japonica, exhibit

a second form of photorefractoriness, termed relative

photorefractoriness, in which prolonged exposure to long days

results in reduced sensitivity to photoperiod, but never a total loss

of sensitivity to photoperiod as a reproductive stimulus (Robinson

and Follett, 1982). Consequently, in Japanese Quail longer

photoperiods are necessary to maintain reproductive development

at the end of the breeding season than are needed to induce



development at the beginning of the breeding season. Relative

photorefractoriness may also precede the onset of absolute

photorefractoriness in Turkey breeder hens, Meleagris gallopavo

(Siopes and Proudman, 2003) and Song Sparrows, Melospiza

melodia (Wingfield, 1993), but this phenomenon has not been

identified in other species (Dawson, 1998).

Non-photoperiodic environmental signals also influence the

timing of reproduction in birds. These signals include temperature

(Perfito et al., 2005, Wada, 1993, Wingfield et al., 2003), food

availability (Deviche and Sharp, 2001, Hahn, 1998, Hau et al., 2000,

Ligon, 1974), increased green vegetation (Priedkalns et al., 1984),

humidity (Cynx, 2001, Vleck and Priedkalns, 1985), water

availability (Vleck and Priedkalns, 1985), rain (Ohmart, 1969, Zann

et al., 1995), and presence of mates (Eda-Fujiwara et al., 2003,

Moore, 1982, Wingfield and Monk, 1994). Non-photoperiodic cues

are thought to accelerate or inhibit the effect of photoperiod on

reproductive development and behaviors, thus ensuring that the

timing of breeding is synchronized with optimal local

environmental conditions (Wingfield et al., 2000). In some

environments such as the tropics, deserts, and near Arctic, birds

may breed at different times in different years (Deviche and Sharp,

2001, Hahn et al., 1997, Ohmart, 1969, Stutchbury and Morton,

2001), and in these environments the timing of reproductive

behaviors appears to be predominantly controlled by non-

photoperiodic stimuli (Hahn et al., 1997, Hau, 2001, Zann et al.,

1995) such as increased rainfall (Grant et al., 2000, Lloyd, 1999,

Marshall, 1963, Ohmart, 1969, Zann et al., 1995).



Both photoperiodic and non-photoperiodic environmental

information may be conveyed through neuroendocrine pathways

that influence luteinizing hormone (LH), follicle stimulating

hormone (FSH), and prolactin secretion. Elevated plasma prolactin

inhibits LH secretion and promotes testicular regression in some

birds (Buntin et al., 1988, Camper and Burke, 1977, You et al., 1995)

and thus, this hormone may play a role in fine-tuning the timing of

breeding (Dawson and Sharp, 1998, Sharp and Blache, 2003). In

photoperiodic birds, experimental studies show that prolactin, LH,

and FSH secretion responds to changes in photoperiod (Ebling et

al., 1982, Gahali et al., 2001, Maney et al., 1999a, Stokkan et al.,

1988, Tong et al., 1997) and increase in association with

photoinduced gonadal growth (Deviche and Sharp, 2001, Haase et

al., 1985, Silverin, 1991). The development of absolute

photorefractoriness is associated with decreased plasma LH while

plasma prolactin decreases after absolute photorefractoriness is

established (Dawson et al., 2001, Sharp et al., 1998, Sharp, 2005).

Non-photoperiodic information influencing reproduction can

increase plasma LH and/or sex steroids, as demonstrated in the

Houbara bustard, Chlamydotis undulata (Saint Jalme et al., 1996),

Spotted Antbird, Hylophylax naevioides (Wikelski et al., 2000),

Canary, Serinus canaria (Leitner et al., 2003), and Darwin's Finch,

Geospiza fuliginosa (Hau et al., 2004). Prolactin secretion has also

been shown to be regulated by non-photoperiodic factors

associated with reproductive function, such as the expression of

parental behaviors (Ketterson et al., 1990, Seiler et al., 1992, Sharp

et al., 1998), or with environmental factors which might affect

reproductive function including temperature (Maney et al., 1999a)



and hydration level (Arad and Skadhauge, 1984, Arnason et al.,

1986, Harvey et al., 1984).

The present study investigates the environmental control of

reproduction in the Rufous-winged Sparrow, Aimophila carpalis, a

year-round resident of the Sonoran Desert (Lowther et al., 1999).

This species normally reproduces during the summer monsoon

season (July–September), but can also breed between March and

June in years with a wet winter or spring (Lowther et al., 1999,

Ohmart, 1969, Phillips, 1968, Wolf, 1977). It has been hypothesized

that many birds living in the deserts of Mexico and the American

Southwest use a combination of photoperiod and cues associated

with rain to time reproduction (Delesantro, 1978, Miller, 1958,

Vleck, 1993). In male Rufous-winged Sparrows, testes consistently

develop in March/April, concurrent with increasing photoperiod

and temperature. Testicular regression normally occurs in

September after breeding and during decreasing photoperiod

(Deviche and Small, 2005, Ohmart, 1969, Phillips, 1968, Wolf,

1977).

Based on this information, we hypothesized that the annual

testicular cycle of Rufous-winged Sparrows is regulated by

photoperiod and is terminated by decreasing photoperiod rather

than by the development of absolute photorefractoriness. This

hypothesis predicts that Rufous-winged Sparrows will increase

testis size in response to long photoperiods but will not undergo

spontaneous testicular regression in response to chronic exposure

to a long, stimulatory photoperiod. This hypothesis also predicts

that Rufous-winged Sparrows will always be photosensitive, and



consequently, testicular regression in the fall will be reversed if the

birds are exposed to long days.

Based on data from other species that breed during periods of rain

(Balthazart et al., 2004, Cornil et al., 2006, Hegner and Wingfield,

1987, Hill et al., 2005, Ketterson et al., 1992, Wingfield, 1984,

Wingfield et al., 1990), we hypothesized that the absence of

breeding in the spring and early summer of most years is due to

low plasma LH and sex steroids and we predicted that LH would

increase during the monsoon season. Furthermore, because

prolactin may inhibit reproductive function in birds (Sharp and

Blache, 2003), we hypothesized that the predicted increased in

plasma LH during the monsoon season is facilitated by a decrease

in plasma prolactin and we predicted that plasma prolactin would

increase in the spring, while testes are developing, but decrease

during the monsoon season.

Ohmart (1969) postulated that in Rufous-winged Sparrows

temperature is “the main factor involved in terminating the

northern [population's] breeding season”. We tested the

hypothesis that temperature is the main factor controlling

seasonal testicular regression by exposing captive birds held on

long days to a daily temperature cycle that was similar to, or cooler

than, temperatures experienced by free-living birds during

reproductive regression. If temperature is the primary regulator of

gonadal development, we predicted that testicular regression

would occur in birds exposed to cooler temperatures, despite long

day exposure.



Section snippets

Materials and methods

Birds were caught at the University of Arizona's Santa Rita

Experimental Range and on public lands in and around Green

Valley, Arizona (31°46′N/110°50′W, elevation approximately

900 m). Palo Verde, Cercidium sp., Mesquite, Prosopis sp.,

Hackberry, Celtis sp., Acacia, Acacia sp., Dalea, Dalea sp., Cholla,

Opuntia sp., and other cacti are the dominant woody vegetation in

this Sonoran Desert grassland.

The Arizona State University Institutional Animal Care and Use

Committee approved all techniques…

Field study

Testis size changed seasonally (F  = 201.1, P < 0.001; Fig. 1A). In

2000, testicular regression began between August 10 and

September 6 (P = 0.003) when photoperiod declined from 13.45 to

12.65 h/day. Testes were completely regressed by October 7
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(September 6 to October 7, P < 0.001) and remained small through

the winter. In 2001, testis diameter increased between February 15

and March 14 (P < 0.001) when photoperiod increased from 11.03 to

11.93 h/day, and testes reached maximal observed size by…

Regulation of the seasonal testicular cycle

These data demonstrate that free-living male Rufous-winged

Sparrows develop gonads in the spring when photoperiod

increases and regress gonads in the fall when photoperiod is

decreasing. Similar to previous experiments (Deviche and Small,

2005), the photoperiodic manipulation studies presented here

show that long photoperiods stimulate and maintain testicular

growth, indicating that seasonal testicular function is

photoperiodically regulated. However, unlike most photoperiodic

passerines,…
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